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Abstract. In this paper we analyze the use of phase plates to obtain homogeneous laser intensity profiles.
We studied the dependence of intensity distribution on phase plates characteristics, we obtained analytical
solution for the intensity profile in the focal plane for plane waves and developed a numerical simulator
to calculate the intensity distribution with a generic initial beam and at any propagation plane. We
defined criteria to evaluate the quality of profiles produced by different phase plates. Finally we compared
experimental results obtained at the Max-Planck Institut für Quantenoptik of Garching with our numerical
simulations.

PACS. 52.35.Tc Shock waves and discontinuities – 52.38.-r Laser-plasma interactions – 52.50.Jm Plasma
production and heating by laser beams (laser-foil, laser-cluster, etc.)

1 Introduction

Many applications in laser-matter interaction need an in-
tensity distribution in the focal plane which is uniform or
at least free from high intensity “hot-spots”. In particular
some application depends on laser energy, while the elec-
tromagnetic phase distribution does not affect the physical
process. One of these is inertial-confinement thermonu-
clear fusion (ICF) [1,2], whose request of uniform irradia-
tion is very high. In ICF, laser beams are used to compress
and heat a little sphere of deuterium-tritium to density
and temperature that can start nuclear ignition [1,2]. A
high degree of spherical convergence of the fuel is required:
if the energy is not uniformly deposed nuclear burning will
not start, furthermore the energy efficiency of the process
depends on implosion symmetry [3,4]. Symmetry is func-
tion of number and geometry of laser beams, but also of
the single-beam laser-intensity distribution [5]. The focal
spot intensity distribution of a single laser beam is de-
termined by interference and diffraction effects. As previ-
ously said, these may in particular produce local hot-spots
and energy concentration which then produces undesirable
nonlinear plasma and hydrodynamic instabilities.

Different techniques were developed to smooth the fo-
cal spot intensity distribution and eliminate hot-spots.
Kato et al. [6] introduced random phase plates (RPP) to
scramble the phase of the beam. Ross et al. [7,9] extended
this research by using an array of diffractive lenses: the
phase zones plates (PZP). We have studied these opti-
cal devices, RPP and PZP, and analyzed the focal spot
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intensity distribution as a function of the parameters of
phase plates. We found analytic solutions for the focal
spot intensity distribution and developed a numerical sim-
ulator of electromagnetic wave propagation through these
devices.

Both RPP and PZP break the spatial coherence of
laser beams, reducing it, and divide the initial beam in a
number of beamlets only by changing the phase of each
beamlet (the intensity value is not affected). These optical
devices work with a focusing lens that produces the over-
lapping of the beamlets in the focal spot plane. The focal
spot distribution intensity is then characterized by a lot
of high-intensity peaks that are smaller than the original
hot-spots: if such peaks have size smaller than a character-
istic length in the plasma, the target will not suffer from
modulations, the intensity fluctuations being averaged by
plasma thermal conduction. In particular the peak size
must be smaller than the mean free path of electrons in
the plasma for thermal smoothing to be effective. This can
be calculated as:

λl =
7.2× 1012 (Te (eV))2

ne lnΛ
cm, (1)

where Te is plasma temperature in eV, ne is electron den-
sity, Λ is the Colombian logarithm which depends on par-
ticles collisions. Typically in the corona of laser produced
plasmas ne ' 1021 cm−3, Te ' 500 eV and lnΛ ' 5, so
that λl ' 3.6× 10−4 cm ' 4 µm.

This allows to introduce an objective criterion for
evaluating the performance and design of phase plates.
In order to this, we studied the spectral distribution of
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intensity by Fourier transform of the focal spot intensity.
The request of having an intensity distribution character-
ized by a lot of peaks smaller than the plasma electron
mean-free-path (see Eq. (1)) can be thought as producing
a high “spatial-frequency” intensity distribution (Fourier
transform of focal spot intensity), where the reference spa-
tial frequency is the inverse of the plasma electron mean-
free-path. Hence, the evaluation parameter can be defined
as the ratio between high-frequency and low-frequency
intensity:

J =

∫ ∫∞
1/λl

∣∣∣Ĩ (α, β)
∣∣∣dαdβ∫ ∫ 1/λl

0

∣∣∣Ĩ (α, β)
∣∣∣ dαdβ

, (2)

where Ĩ (α, β) is the Fourier transform of laser intensity
distribution. The better profiles are then those which max-
imize the value of J .

Unlike RPPs, which produce a Gaussian-like intensity
distribution in the focal spot, PZPs can produce a top-
hat (super-Gaussian) distribution of focal spot intensity.
To analyze this PZP property and to evaluate the different
performance of PZPs we then need to define another pa-
rameter, which takes into account not only the elimination
of short-scale laser spikes, but also how close the average
profile is to a super-Gaussian one. In order to do this, we
perform a spatial filtering of the intensity profile over a
distance of the order of λl to obtain an averaged intensity
Ifiltered, which contains the same total energy of the un-
filtered intensity profile. We then consider the quadratic
norm of difference between the “desired” profile (a super-
Gaussian distribution) and the filtered distribution, and
define the evaluation parameter as:

J2 =
1

||Ifiltered − Sn||2
, (3)

where Sn is a super-Gaussian profile of order n:

Sn = exp
[
−
(
ξ2 + η2

w2

)n]
(4)

(where typically we choose n = 2). Of course the “better”
average profiles are those which maximize equation (3). In
the case of PZPs then, an evaluation of PZP design can
be obtained by maximizing a global evaluation parameter
given by a weighted sum of J and J2.

The two parameters J and J2 have been used in the
paper to compare different phase plates. In the final part
of the paper some experimental results obtained at MPQ
are shown and compared to our numerical results.

As summary, the new results contained in this paper
are:

• we obtained analytical solutions for the laser intensity
distribution in the focal spot with phase plates of dif-
ferent type and geometry;
• we have introduced an objective criterion (“figure of

merit”) for the evaluation of phase plate performances
and design;

Fig. 1. Front and side view of a RPP with square zones. Black
and white zones are in reality equally transparent, but white
zones do not introduce additional phase, black zones introduce
an additional phase of λ/2. Hence only the phase of the initial
beam (and not the intensity) is damaged which explain the
name of “phase plate”.

• we have obtained experimental results on laser inten-
sity distribution (and laser driven shocks produced in
the respective positions) and compared them with our
numerical simulations.

2 Random phase plates

A random-phase plate consists of a two-dimensional array
of transmitting areas each of which applies a phase shift
randomly chosen to be either 0 or π. RPP works with a
focusing lens. The RPP divides the laser beam in a num-
ber of beamlets which have a random phase shifts. The
focusing lens overlaps these beamlets in the focal plane,
the spot is determinate by the envelope of the beamlets.
The RPP zones can be of different shapes. In the following
we will discuss the case of square and hexagonal zones.

2.1 Square RPP

We calculated analytic solution for the distribution of the
focal spot intensity when a plane wave travels trough a
optical system composed by a focusing lens and a RPP.
In this case the RPP can be considered like an array of
rectangular (square in our situation, see Fig. 1) holes and
we can apply the Fraunhofer approximation, the distribu-
tion of spot focal intensity is the sum of far-field solutions
for the single aperture [10]. The Fourier transforms (FT)
of a rectangle, is a “sinc” function. Due to FT properties,
a spatial translation corresponds to a phase shift in the
FT domain, and, hence, the solution is the sum of “sinc”
with randomly different phases [11].

To simplify the calculations we suppose that the RPP
is made of an integer number of elements, i.e. D = Md
(where D is the dimension of RPP, d is the single element
dimension and M is an integer). Then the electric field
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(a) (b)

Fig. 2. Focal spot in-
tensity distribution, ana-
lytically calculated, with
a square RPP of N2

2500 zones. RPP dimen-
sions are 105λ×105λ and
l = 2 × 103λ, f = 2 ×
106λ. Bidimensional in-
tensity (a), axial inten-
sity (b).

distribution in the focal plane (with coordinates ξ and
η) is:

E (ξ, η) = − il2

λf
e−ikfeikD+l

2f (ξ+η)sinc
(
k
lξ

2f

)
sinc

(
k
lη

2f

)
×

M∑
h,j=1

exp
[
−i
(
kl
xhξ + jη

f
+ φjh

)]
, (5)

and the intensity is given by EE = |E|2, or:

I (ξ, η) =
(
l2

λf

)2

sinc2

(
k
lξ

2f

)
sinc2

(
k
lη

2f

)

×


M∑

h,j=1

exp
[
−i
(
kl
hξ + jη

f
+ φjh

)]
×
{

M∑
n,m=1

exp
[
i
(
kl
nξ +mη

f
+ φmn

)]}
· (6)

Here k = 2π/λ, λ is the wave length of laser, f is the focal
length of the focusing (principal) lens, D is the laser beam
diameter, which is assumed to be equal to the RPP total
dimension, d is the dimension of the (square) RPP single
zone, and φmn is the phase shift which is introduced on
a single beamlet by the (m,n) element of the RPP. This
term can either be +1 or −1 corresponding to a phase
shift of 0 or π [6], hence the different beamlets can either
be in phase or in phase opposition among themselves.

The analytic solution has two terms: the first corre-
sponds to the analytic solution for a single rectangular
aperture, the second is determined by the FT properties.

The first term, the “sinc” function, gives the total en-
velope of the intensity distribution. It determines the focal
spot dimensions and the shape and fraction of the initial

laser energy which is contained inside the focal spot (82%
in this case). The intensity distribution width is deter-
mined by the first zero of the “sinc”:

ΦS = 2
λf

d
· (7)

The second term, the summation, represents the “high
frequency” modulation of intensity distribution and gives
rise to many peaks with typical width

Φp = 2
λf

D
· (8)

We can see that the spike dimension scales as 1/D while
the focal spot dimension scales as 1/d. An example of the
obtained focal spot intensity distribution is shown in Fig-
ure 2. When we focus the laser beam with the lens only
we have hot-spots that have a size smaller but of the same
order of the focal spot dimension. By the use of RPP we
can control and reduce the peak dimension. The intensity
distribution in the focal spot calculated with the simulator
described in Appendix A is in a good agreement with Fig-
ure 2. Only the analytical solution looks more symmetric
than the simulation result. The differences are due to the
fact that Fraunhofer approximation requires a slow phase
variation [12], but RPP causes a lot of phase-jumps (at the
edge of single zones) that limit the accuracy of such ap-
proximation. When we use a lens with a large focal length,
the approximation is better, and the agreement between
the simulation and the analytic calculation improves.

2.2 Hexagonal RPP

The fraction of laser energy contained inside the fo-
cal spot is an important parameter in ICF experi-
ments. To improve the energy efficiency of phase plates,
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Dixit et al. [13] fabricated RPP with hexagonal-shaped
elements (see Fig. 3). The central maximum of rectangu-
lar aperture far-field pattern contains about 82% of total
energy, as we wrote before, while the central maximum of
the pattern generated by a plane wave trough a regular
hexagonal aperture contains 84% of initial energy, like in
an Airy pattern.

We calculated the analytical solution for a hexagonal
RPP, as we did for square RPP, in the focal plane of the
principal lens, i.e. in Fraunhofer approximation.

To simplify our calculations, we made some hypoth-
esis about the dimensions and the position of the zones.
We supposed that only external columns and rows con-
tain incomplete zones, that is zones which are cut by the
plate edges or only partially illuminated by the laser beam.
The global analytical solution contains contributions from
complete and incomplete zones, and is given by

E (ξ, η) = E1 (ξ, η)
M−1∑
h=2

N−1∑
j=2

exp
[
−i
(
kl
xhξ+yjη

f
+φjh

)]

+E2 (ξ, η)
M−1∑
h=2

exp
[
−i
(
kl
xhξ + y1η

f
+ φ1h

)]

+E3 (ξ, η)
M−1∑
h=2

exp
[
−i
(
kl
xhξ + yNη

f
+ φNh

)]

+E4 (ξ, η)
N−1∑
j=2

exp
[
−i
(
kl
x1ξ + yjη

f
+ φj1

)]

+E5 (ξ, η)
N−1∑
j=2

exp
[
−i
(
kl
xMξ + yjη

f
+ φjM

)]
+E6 (ξ, η) exp

[
−i
(
kl
x1ξ + y1η

f
+ φ11

)]
+E7 (ξ, η) exp

[
−i
(
kl
x1ξ + yNη

f
+ φN1

)]
+E8 (ξ, η) exp

[
−i
(
kl
xMξ + y1η

f
+ φ1M

)]
+E9 (ξ, η) exp

[
−i
(
kl
xMξ + yNη

f
+ φNM

)]
,

(9)

where l is the diameter of the circle circumscribing an
hexagonal, N × M is the number of zones in the RPP,
(xh, yj) are the coordinates of the center of zones, (ξ, η)
are the coordinates in the focal plane and again φmn is
the phase shift which is introduced on a single beamlet by
the (m,n) element of the RPP.

Here, the principal termE1 represents the contribution
of complete zones, (the complete solution and the expres-
sion for all the terms Ei may be found in Ref. [14]), and

Fig. 3. Front and side view of a RPP with hexagonal zones.
Black and white zones are in reality equally transparent, but
white zones do not introduce additional phase, black zones
introduce an additional phase of λ/2.

is given by

E1 (ξ, η) = − i
λf

e−ikf

{√
3

4
l2sinc

(
klξ

4f

)
sinc

(
k
√

3lη
4f

)

− lf

2kη

[
sin

kl

8f

(
ξ +
√

3η
)

sinc
kl

8f

(
ξ +
√

3η
)

− sin
kl

8f

(
ξ −
√

3η
)

sinc
kl

8f

(
ξ −
√

3η
)]}

·

(10)

The terms E2 . . . E9 represent the contribution of incom-
plete zones, those lying at the four sides and the four an-
gles of the phase plate. Then E2 is the contribution of the
generic incomplete hexagonal zones of the first row of the
RPP from the second to the M − 1 zone, E6 is relative
to the first element of the RPP (first row, first column),
E8 represents the last zone of the first row; E3 is relative
to the last row, E7 represents the contribution of the ele-
ment on the first column and last row of the RPP, E9 is
relative to the element on the last column and last row;
E4 represents the contribution of the generic incomplete
hexagonal zone of the first column andE5 the contribution
of the generic incomplete hexagonal zone of last column.
Notice that each Ei term is proportional to the total area
of hexagonal zones which have produced it.

Equation (10) contains two terms, the first repre-
sents the envelope of the entire solution and it given by
Fraunhofer diffraction of a hexagonal fenditure. The en-
ergy focused inside such an envelope is about 84%, as we
expected. The dimension of focal spot is determined by
the first zero of the “sinc” function:

ΦS = 2
4
3
λf

l
· (11)

The exponential factors following E1 . . . E9 represent the
“high spatial frequency” modulation of RPP. The spikes
dimension is determined by the exponential and is:

Φp = 2
λf

D
· (12)
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(a) (b)

Fig. 4. Focal spot in-
tensity distribution, ana-
lytically calculated, with
a hexagonal RPP of
1 688 zones. RPP di-
mensions are 49 500λ ×
47 650λ and l = 1 500λ,
f = 3 × 106λ. Bidimen-
sional intensity (a), axial
intensity (b).

Figure 4 shows the intensity distribution calculated from
equation (9). Again it is possible to show that there is
good agreement with the intensity distribution obtained
with the simulator in the same conditions (the same con-
siderations about the differences between simulation and
the analytical solution as in the square RPP case can be
made).

2.3 Figure of merit

In order to evaluate the design of RPP we made the
Fourier transform of the intensity distribution in the focal
spot plane. Figure 5 shows such FT for the case of a square
RPP analytically calculated from equation (6). The situa-
tion is similar in the case of hexagonal RPPs (FT of “sinc”
function convoluted with sums of Dirac delta functions).

Figure 5 shows the presence of a maximum spatial fre-
quency equal to the inverse of the spike width, as expected.
Of course the design of RPP must be done so that such
spike width is shorter than the plasma electron mean-free-
path, but this condition is not sufficient. Indeed Figure 5
shows the presence of secondary, local maxima at spatial
frequencies which are multiple of the inverse of the spot
dimension. Other secondary maxima may appear because
the design of the RPP is not really random but contains
some long-distance correlation. All such secondary max-
ima represent energy concentration on long scale lengths
and must hence be minimized (which corresponds to max-
imizing the evaluation parameter J described in the intro-
duction).

The maximum at zero-frequency, due to FT proper-
ties, represents the total energy in the focal spot. As we
could expect the maximum frequencies are related to spike
dimension: as we increase the number of zones in a RPP
(either hexagonal or rectangular) we obtain a higher maxi-
mum frequency and the local maxima, at lower frequencies
are smaller. This corresponds to a larger concentration of
energy in short scale spikes.

Fig. 5. Analytical FT of the intensity distribution in the focal
spot obtained with a square RPP (shown in Fig. 2). In this fig-
ure we report the x-axis distribution of the 2D FT analytically
calculated from equation (6).

We applied equation (2) with RPPs and obtained that
J increased with the number of zones. This result can
appear obvious, but this is true only if the 0-phase and
the π-phase zones are randomly distributed, as we verified
on a simple RPP (8× 8 zones) with a different position of
two types of zones. In this case we noted that J increased
when zones are more randomly distributed (and this will
be truer with a large number of zones). See later (Sect. 3.3)
same discussion for PZPs and Figure 10.

3 Phase zone plates

Phase zones plates consist of an array of Fresnel lenses
[7,9]. A transparent Fresnel lens is made of transmitting
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Fig. 6. Square PZP. Black and white zones are in reality
equally transparent, but white zones do not introduce addi-
tional phase, black zones introduce an additional phase of λ/2.

zones, alternately with 0-phase and π-phase. Rings are
concentric and their dimensions are chosen so that the
contribution from each single zone is in phase with all the
others in the focal plane. All the Fresnel lenses in a PZP
are of the same dimension and contain the same number
of zones, but there are two kinds of Fresnel lenses: with a
first zone with 0-phase and with a first zone with π-phase.
The focal length (fz) of this lens, its dimension (rN ) and
the number of zones (N) are related [15,16] through:

rN =
√
Nλfz. (13)

PZPs work with a principal focusing lens and, like in
RPPs, when a beam travels through a PZP is split into
several beamlets. The shape of focal spot is determined by
the shape of each individual beamlet, that can be square
or hexagonal. The focusing lens and the Fresnel lens are
an optical device with a total focal length:

1
fTOT

=
1
fZ

+
1
f
· (14)

In the focal plane (at distance fTOT) there is an array of
foci, each beamlet being focused in a different point. In the
principal focal plane (at distance f) each beamlet is defo-
cused and enlarged and then will overlap with the others.
The dimension of the focal spot in this plane is [7,9]:

WS 'Wz
f

fz
= 2

√
Nλ

fz
f = 4

Nλ

Wz
f, (15)

where Wz = 2rN is the diameter of the single Fresnel lens.
Energy efficiency is about 81%. PZPs can produce an

average profile which is almost flat-top (super-Gaussian-
like). Such flat irradiation is very suitable for a series of
experiments including laser plasma interaction and laser
shock experiment.

3.1 Square PZP

We calculated the analytical solution of a plane wave trav-
eling through a square PZP in Fraunhofer approximation,
and we compared it with simulation results. To simplify
analytical calculations we considered only Fresnel lenses
with complete zones, and only complete Fresnel lenses in
the PZP (see Fig. 6). The phase plate is an array of M×M
Fresnel lenses, each of dimension Wz, where MWz = D,
inserted in a square cell. The contribution of a single
Fresnel lens to the electric field in the focal plane is:

EqPZP(ξ, η) =

− i
λf

e−ikfW 2
z sinc

(
k
Wzξ

2f

)
sinc

(
k
Wzη

2f

)
+ 2

ik
f

e−i2kf

×
N−1

2∑
n=0

r2n+1J1

(
r2n+1k

ξ2+η2

f

)
− r2nJ1

(
r2nk

ξ2+η2

f

)
k ξ

2+η2

f

,

(16)

where k = 2π/λ, J1 is the Bessel function and the index q
indicates the square shape of the lens. Hence, the intensity
profile produced from a complete PZP is:

I (ξ, η) = |EqPZP|
2

{
M∑

r,s=1

exp
[
−i
(
kWz

rξ + sη

f
+ φsr

)]}

×


M∑

j,h=1

exp
[
i
(
kWz

hξ + jη

f
+ φjh

)] · (17)

The term |EqPZP|
2 represents the overall envelope of the

intensity profile in focal plane and determines the total
dimension of the focal spot (see Eq. (15)). The analyti-
cal solution given by equation (16) is less significant than
the one obtained for RPP. Indeed, as already said in this
case, the analytical solution requires a slow variation of
the phase over the integration domain. But in PZPs there
are many more phase jumps so that the analytical solution
corresponds to the case of very long focal lengths

As in the case of PZPs, the dimension of hot-spots is
given by equation (8). However here relation between fo-
cal spot dimension and peaks dimension is different. In
the case of RPPs, this is given by the ratio between equa-
tion (8) and equation (7):

Φp

ΦS
=

d

D
=

1
M
· (18)

In the case of the PZP it is instead given by the ratio
between equation (8) and equation (15):

Φp

WS
=

2Wz

ND
=

2
NM

· (19)

In Figure 7 we report an intensity profile obtained from
simulation in the principal focal plane while Figure 8
shows the intensity profile in a plane 5 mm beyond the
principal focal plane.
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Fig. 7. Calculated dis-
tribution of intensity in
the principal focal plane
with a square PZP, with
dimensions Wz = 104λ,
D = 96 × 103λ (M = 9
complete Fresnel lenses),
N = 6 complete zones for
each Fresnel lens, fz =
4.17×106λ and f = 750×
103λ. Focal spot dimen-
sion is 1 800λ, and hot-
spots dimension is 15.6λ.

(a) (b)

Fig. 8. Calculated dis-
tribution of intensity in
the principal focal plane
with a square PZP, with
dimension Wz = 104λ,
D = 96 × 103λ (M = 9
complete Fresnel lenses),
N = 6 complete zones for
each Fresnel lens, fz =
4.17 × 106λ and f =
750 × 103λ. This optimal
plane is 5 × 103λ beyond
principal focal plane. In-
tensity profile along one
focal spot diameter (a),
spatially filtered intensity
profile compared with a
super-Gaussian (b). The
super-Gaussian conserves
the total energy con-
tained in the initial inten-
sity distribution.

As already pointed out in previous works [6,9,13] the
intensity distribution in the focal plane of the main lens (at
distance f) is characterized by a central peak in the origin
of axis (ξ = η = 0). This peak arises because of the zeroth
order diffraction contributions. In the first approximation
the Ei terms are proportional to the total area of zones
that produced it. Now, since the summation term depends
only on the terms φjh and such values can be either 1
or −1 (if we take care of make differential phase equal
to π), then, in principle, we can eliminate the central peak
by making PZPs with an equal area of 0-phase and π-
phase zones. However, this is very difficult to be practically
realized because the fabrication accuracy at the zones edge
should be the same order of wave length of the laser beam,
and because some of our assumptions are not strictly true

(in particular not all the zones are completely illuminated
by the laser beam). This discussion is also true for RPPs.

Then, to reduce the central peak, we also need to work
out of focal plane: here a little defocusing will cause a non-
complete beamlet overlapping and elimination of zeroth
order diffraction. The dimension of focal spot in this plane
will be

WS = Wz
(f + δ)− fTOT

fTOT
, (20)

where δ is the distance from the principal focal plane, WS

is practically equal to Wz . At bigger distances the average
intensity assumes a Gaussian profile, as already pointed
out in references [7,9].
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Fig. 9. Hexagonal phase zone plate. Black and white zones are
in reality equally transparent, but white zones do not introduce
additional phase, black zones introduce an additional phase
of λ/2.

3.2 Hexagonal PZP

Fresnel lenses can be placed in an hexagonal cell, each cell
is surrounded by 6 cells, to obtain a focal spot shape which
is approximately circular [7] (see Fig. 9). Also, in this way,
in each Fresnel lens, the area filled by incomplete zones is
lower than with square cell, so that the PZP becomes more
efficient

The analytical solution for the electric field, in the fo-
cal plane, for a planar wave traveling through a single
hexagonal cell is

EhPZP (ξ, η) = E1 (ξ, η)− 2
ik
f

e−i2kf

×
N−1

2∑
n=0

r2n+1J1

(
r2n+1k

ξ2+η2

f

)
− r2nJ1

(
r2nk

ξ2+η2

f

)
k ξ

2+η2

f

(21)

where E1 (ξ, η) is given in equation (10). To simplify the
analytical calculations we considered only Fresnel lenses
with complete zones and we considered complete Fresnel
lenses only. The intensity distribution is like in equa-
tion (17), where term EqPZP is replaced by EhPZP (Eq. (21)).

In this case too, the term
∣∣EhPZP

∣∣2 represents the to-
tal envelope of the intensity distribution. Focal spot and
hot-spots dimensions are given by equation (15) and equa-
tion (8) respectively.

3.3 Figure of merit

As explained before, we introduced another figure of merit
to analyze the intensity profile quality produced by a PZP.
For PZP we have to consider both J (Eq. (2)) and J2

(Eq. (3)).
Even without explicitly making the FT of equa-

tions (16, 21), we can deduce that the FT is limited and

has negligible values at spatial frequency above D/λf .
Equation (17) contains three terms and its FT is a con-
volution of the FT of the three terms: the FT of the two
exponential summation is a summations of Dirac deltas
and the maximum spatial frequency is (M − 1)Wz/λf ;
the maximum frequency of the FT of the first term is
Wz/λf (is a sum of “sinc” functions and Bessel functions,
whose bidimensional FT are respectively square and cir-
cular functions). Then the “global” maximum frequency
is the maximum frequencies of the three terms and hence
is D/λf .

With PZP we can vary different parameters: number
of Fresnel lenses (M), the number of zones in a single
lens (N) and the focal length of Fresnel lenses (fz). Two
of these can be chosen independently, the third one is
then fixed by equation (13) and the fact that MWz =
M (2rn) = D.

As for the other parameters, λ and D are constant
since in practice they depend on the laser beam charac-
teristics, and f must be changed so to maintain a constant
dimension for the focal spot (see Eq. (15)).

We analyzed three cases: variation of M (5, 6, 8, 10,
12), N constant = 4; N changes (3, 4, 5, 8) and M con-
stant = 10; M and N change and fz constant. In the
first two cases J and J2 increase with increasing of M or
N . In the last case J2 shows a maximum. The average
profile depends on the number M of Fresnel lenses in a
PZP: if this is low the average intensity does not reach
a super-Gaussian shape. J depends instead, as before, on
the number N of zones in each Fresnel lenses. These re-
sults are true if there is a random disposition of the two
types of Fresnel lenses, both figures increasing as disposi-
tion gets more and more random (see Fig. 10). These dif-
ferent aspects have to be optimized: first of all we choose
the number of Fresnel lenses that give the desired flat-
top profile, after we choose the number of zones in order
to have peaks dimensions which are short enough (not to
affect energy deposition on target).

A comparison between rectangular and hexagonal PZP
shows that the last ones are more efficient, having a
greater number of complete zones with the same dimen-
sion of lenses.

4 Hot-spots suppression

In the previous sections, we analyzed the effects of phase
plates on planar waves. In this section we show that phase
plates can suppress hot-spots whenever they are present
in the laser beam.

Figure 11 shows the intensity profile at the initial plane
and the hot-spots generated in the focal spot with only a
focusing lens (f = 500 mm). The initial intensity distribu-
tion was randomly generated as a sum of Gaussians with
random height and position. Also the phase of the initial
beam was generated as sum of random Gaussian. Wave-
length is 0.543 µm, dimensions are 40 mm× 40 mm.

The intensity profile obtained with an hexagonal PZP
and the initial beam of Figure 11 is depicted in Figure 12.
Fresnel lenses dimension is 13 mm, their number is 23
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Fig. 10. Shape of the two figures of merit
depending on the position of the two types
of Fresnel lenses. On the left side the figure
of merit defined in equation (2) is showed
(J). On the right side the figure of merit
defined in equation (3) is showed (J2). The
bottom part of the figure shows the dis-
tribution of the Fresnel lenses in the PZP
corresponding the different point. Case 1
corresponds to the plate divided in two
halves and it is not showed.

and their focal length is 10 m. Each Fresnel lens contains
8 completes zones. Again, the focal length of the focus-
ing lens is 500 mm. From equation (15) we obtain a spot
dimension of 650 µm, with peaks of 13.6 µm.

Figure 12 clearly shows how phase plates can suppress
hot-spots, generating a focal spot characterized by small
peaks will do not affect energy deposition on target.

5 Experimental results

We compared our simulations with experimental results
obtained with the Asterix laser at Max-Planck-Institut
für Quantenoptik in Garching.

Asterix is a high power single-mode iodine laser with
emission wavelength at 1.315 µm, and a maximum energy
of 1.2 kJ per pulse. The laser light was converted with non-
linear KDP crystals into third harmonics (λ = 438 nm),
with an energy conversion efficiency of 56%. Pulse dura-
tion was 400 ps (producing a 3 TW power full-energy laser
shots) with a duty cycle of 20 minutes between two laser
shots. The diameter of beam is 300 mm.

In the experiment, first we obtained the images of
laser intensity distribution at various focal planes through
hexagonal PZP. Then we irradiated solid Al targets (foils
with a typical thickness of 18 µm) in order to produce a
high pressure shock in the material. Shock breakout was
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(a) (b)

Fig. 11. Simulation of
hot spots. Initial intensity
profile, the wavelength is
λ = 0.543 µm and the
dimensions are 40 mm ×
40 mm (a). Intensity pro-
file at focal plane (f =
500 mm) (b).

Fig. 12. Intensity pro-
file in the principal focal
plane with a hexagonal
PZP (D = 40 mm, f =
500 mm, Wz = 13 mm,
fz = 10 m and N = 8,
with 23 Fresnel lenses),
the initial beam is the
same of Figure 11. We
obtain WS = 650 µm and
Φp = 13.6 µm.

detected from target rear side. The uniformity of the shock
is connected to the uniformity of the irradiation profile,
giving an experimental evidence of laser profile effects as
shown for instance in [17,18]. The experimental setup in
this case is shown in Figure 13. A streak camera is used to
record shock breakout images. When the intensity distri-
bution had to be obtained, the target was removed. In this
case we used a cw He:Cd laser operating at the same (3ω)
wavelength, expanded to get a 30 cm diameter. The diag-
nostic system consisted in a CCD camera with pixel size
of 20 µm coupled to a magnifying imaging system with
a magnification M = 10. The system spatial resolution
was 2 µm.

The hexagonal PZP had dimension of Fresnel
lenses (Wz) of 20 mm, focal length (fz) of 28.2 m with
8 complete zones. The focusing lens had a focal length of
564 mm and the focal spot was of 0.4 mm. Due to tech-
nical problems with the lithography process, it was not

Fig. 13. Experimental set-up, used at MPQ to detect shock
breakout from laser irradiated Al targets.
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Fig. 14. Intensity dis-
tribution in the total fo-
cal plane. The laser char-
acteristics were D =
300 mm and λ = 44 nm,
the focal length of princi-
pal lens was f = 564 mm.
PZP characteristics were
Wz = 20 mm, fz =
18 100 mm and N =
8. Experimental distribu-
tion (a), simulated distri-
bution (b).

(a) (b)

Fig. 15. Intensity dis-
tribution in the principal
focal plane. Same laser,
PZP and lens character-
istics as in Figure 14. Ex-
perimental distribution
(a), simulated distribu-
tion (b).

possible to produce a PZP large enough to accommodate
the Asterix laser beam. Hence we designed a PZP which
had to be placed at distance f/4 from the target and 3f/4
from the focusing lens. In this case the beam diameter was
reduced to ' 7.5 cm allowing a single PZP to be used. The
laser flux at position f/4 was 637 mJ/cm2. The theoret-
ical value of damage threshold for the coating on which
the Fresnel lenses are etched is of the order of a couple of
J/cm2. Indeed the PZP did not suffer any resist damage
even at distance f/4. After ' 50 high energy shots, some
damages began to be evident. We think however that this
was mainly due the plasma and debris emission from the
target. Results in this paper show how this configuration
works equally well. Attempts to use larger PZPs obtained
by successive lithography of 4 different PZPs onto a single
fused silica plate did not work: the phase aberration in-
troduced at the edges of each PZP completely destroyed
PZP effectiveness.

To perform the simulations we used a beam with a
Gaussian initial distribution in intensity and whose phase
was a sum of random Gaussians:

φ (r) =
30∑
i=1

Ai exp

(
− (r − ri)2

2σ2
i

)
, (22)

to obtain a random but correlated phase distribution. Sim-
ulations with an initial phase constant over the all laser
beam give similar results, the changes mainly affect peak
positions, not their height. This is what we expected, be-
cause, in order to suppress hot-spots using phase plates,
we want to get an intensity profile at focal spot with a
phase which is practically uncorrelated with the initial
phase of the beam.

Figures 14 and 15 show the comparison between exper-
imental images (a) and simulations (b) in different planes,
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Fig. 16. Shock breakout image corre-
sponding to the intensity distribution
in Figure 15. The target was 18 µm Al.
The energy pulse was 300 J. Notice the
central peak in shock wave.

Fig. 17. (a) Shock
breakout image corre-
sponding to the intensity
distribution in the op-
timal plane. The shock
breakout is flat. The
target was 18 µm Al. (b)
Shock breakout image
corresponding to the
intensity distribution be-
yond the optimal plane
the target was 18 µm Al.
The shock breakout have
a Gaussian shape.

i.e. the focal plane of the total system (focusing lens +
PZP) and in the principal focal plane (the focal plane of
the focusing lens). In order to get a closer comparison, the
images obtained from the simulation were treated to take
into account the finite size of the CCD camera pixels used
in the experiment.

Finally Figures 16 and 17 show the shock front from Al
targets put in the position corresponding to the intensity
distribution of Figure 15 in the optimal plane, where a flat
top distribution is achieved, and beyond that plane, where
the average intensity has a Gaussian-like profile. It is very
easy to see the effect of the central peak in the principal
focal plane, as well as the curved shock front when the
intensity distribution becomes Gaussian-like.

6 Conclusions

In this paper we studied the intensity profile generated by
the use of phase plates and we analyzed the dependence of
peak size and average intensity profile on the characteristic
of phase plates.

We considered random phase plate and phases zone
plate. While both can suppress hot-spots in the focal spot,
PZPs can also produce an average intensity profile which
is super-Gaussian-like, hence producing a more homoge-
neous irradiation. This aspect is advantageous even if the
energy efficiency is lower for PZPs than for RPPs (the fo-
cal spot contains only 81% of the total laser energy against
84% of the hexagonal RPP case).
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Appendix A: Numerical Simulator

The analytical solutions derived in Sections 2.1, 2.2, 3.1
and 3.2 are only available in the lens focal plane, thanks to
the FT properties. In order to get the field and intensity
distribution in all others planes, we needed to develop a
specific numerical simulator. This also allows to use an
initial condition (field incident on phase plate) with any
phase and amplitude distribution.

The simulator is based on Fresnel equation [10] and
hence works in the Fresnel approximation, and not only
in Fraunhofer approximation. This requires to solve the
double integral:

E (r0) = − i
2λ

∫ ∫
A

(1 + cos θ)
Ei (r) e−ik·R

R
dA, (23)

where

A is the integral domain representing the region where
there is a non-null incident wave;

r is a point on the integral domain;
r0 is the point where we calculated the integral;
R = r0 − r;
1 + cos θ is the obliquity factor, where θ is the angle be-

tween the normal at front wave surface and the vec-
tor R.

In order to solve equation (23) we used a 9-points
bidimensional Simpson numerical method [19], that is an
extension of the polynomial monodimensional Simpson
method [20].

We compared numerical simulations with known an-
alytical solution (diffraction from simple geometry fendi-
ture in Fraunhofer approximation) to validate our simula-
tor. In all cases we got a very good agreement [14].

Optical devices as focusing lens and phase plates in-
troduce a phase difference that has to be included in the
exponential term in equation (23).

To predict integration error we must analyze the 4th
order of derivation of the integrated function, which im-
plies a non-simple calculus. However errors mainly depend
on the initial phase (sum of initial beam phase and phase
difference introduced by optical devices). Furthermore we
have to consider errors due to the numerical approxima-
tions. To evaluate the error we analyzed the difference be-
tween simulation results obtained with different integra-
tion steps. We then reduced the step until the difference
between results obtained with two successive integration
steps was close to zero (i.e. small then a parameter fixed
a priori).
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